Deep Regression Neural Networks for Proportion Judgment
نویسندگان
چکیده
Deep regression models are widely employed to solve computer vision tasks, such as human age or pose estimation, crowd counting, object detection, etc. Another possible area of application, which our knowledge has not been systematically explored so far, is proportion judgment. As a prerequisite for successful decision making, individuals often have use judgment strategies, with they estimate the magnitude one stimulus relative another (larger) stimulus. This makes this estimation problem interesting application machine learning techniques. In regard this, we proposed various deep architectures, tested on three original datasets very different origin and composition. novel approach, assumption that model can learn concept without explicitly counting individual objects. With comprehensive experiments, demonstrated effectiveness predict proportions real-life more reliably than experts, considering coefficient determination (>0.95) amount errors (MAE < 2, RMSE 3). If there no significant number in determining ground truth, an appropriate size dataset, additional reduction MAE 0.14 be achieved. The used will publicly available serve reference data sources similar projects.
منابع مشابه
Estimation of Industrial Production Costs, Using Regression Analysis, Neural Networks or Hybrid Neural - Regression Method?
Estimation (Forecasting) of industrial production costs is one of the most important factor affecting decisions in the highly competitive markets. Thus, accuracy of the estimation is highly desirable. Hibrid Regression Neural Network is an approach proposed in this paper to obtain better fitness in comparison with Regression Analysis and the Neural Network methods. Comparing the estimated resul...
متن کاملScalable Gaussian Process Regression Using Deep Neural Networks
We propose a scalable Gaussian process model for regression by applying a deep neural network as the feature-mapping function. We first pre-train the deep neural network with a stacked denoising auto-encoder in an unsupervised way. Then, we perform a Bayesian linear regression on the top layer of the pre-trained deep network. The resulting model, Deep-Neural-Network-based Gaussian Process (DNN-...
متن کاملNonparametric regression using deep neural networks with ReLU activation function
Consider the multivariate nonparametric regression model. It is shown that estimators based on sparsely connected deep neural networks with ReLU activation function and properly chosen network architecture achieve the minimax rates of convergence (up to log n-factors) under a general composition assumption on the regression function. The framework includes many well-studied structural constrain...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملPruned Neural Networks for Regression
Neural networks have been widely used as a tool for regression. They are capable of approximating any function and they do not require any assumption about the distribution of the data. The most commonly used architectures for regression are the feedforward neural networks with one or more hidden layers. In this paper, we present a network pruning algorithm which determines the number of units ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Future Internet
سال: 2022
ISSN: ['1999-5903']
DOI: https://doi.org/10.3390/fi14040100